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A X I A L  J E T  IN A P O T E N T I A L L Y  R O T A T I N G  F L U I D  

IN A P I P E  OF V A R I A B L E  R A D I U S  

V. N. Nikulin UDC 532.5 

Steady fluid flow in a jet located along the symmetry axis of a potentially rotating flow in a pipe 
of variable radius is considered. A theoretical model for this flow is constructed. The dependence 
of the jet parameters on the axial coordinate is investigated in a rigorous formulation under 
specified entry conditions. In particular, the extensibility or nonextensibility of the solution onto 
a semi-infinite interval is established. From an analysis of the behavior of the jet, an attempt 
is undertaken to estimate the behavior of  the core of a tornado-like vortex in a pipe of variable 
radius, namely the possibility of breakdown or jump of the vortex. 

The theoretical model is constructed using the approach developed in previous papers [1, 2], where 
fluid flow in the cores of vertical tornado-like vortices was considered. In contrast to [1, 2], where the flow 
dynamics is due to gravity, the dynamics in the present case is governed by the interaction of the flow in the 
axial jet with the surrounding rotating flow. As a result, we have a greater variety of possible motions than 
in [1, 2]. The approach developed here is based on conventional assumptions, such as an ideal fluid and a 
long-wave approximation. Within the framework of the indicated assumptions, all results are rigorous. 

In the present paper, we study a nonrotating axial jet in a potentially rotating flow of the ambient 
fluid. It is assumed, however, that the fluid flow in the jet can qualitative reflect some important regularities 
of the axial fluid flow in the core of a tornado-like vortex, although the rotation of the fluid in the vortex 
core is close to rigid-body rotation. This is due to the fact that the pipe flow outside the vortex core is 
almost potentially rotational, and inside the core it has a jet character [3-5]. At the same time, within the 
framework of the problem considered, the following two factors are taken into account: rotation of the outer 
flow and its interaction with the jet flow. Both these factors can have a significant influence on the fluid flow 
in the core of a tornado-like vortex. Thus, theoretical results for the jet would be expected to agree, at least 
qualitatively, with experimental data for tornado-like vortices in pipes of variable radius. Such a comparison 
will be performed at the end of the paper. As a result, the influence of the mechanism considered on the flow 
in the vortex core is estimated. 

1. Fo rmu la t i on  of  t h e  P r o b l e m .  An incompressible, inviscid, homogeneous fluid is considered. The 
flow is considered steady and rotationally symmetric. We introduce cylindrical coordinates (r, ~, z), where 
r is the radius, ~2 is the azimuth angle, and the z axis is directed along the symmetry axis. The fluid occupies 
a region z >>. O, r <~ ro(z), where ro(z) is the radius of the pipe, a specified function of z. The flow is divided 
into two regions: region I [r ~ rl(z)] and region II [rl(z) <~ r ~< r0(z)]. Region I is the jet and region II is the 
outer flow. At the boundary r l ,  discontinuity of the velocity component tangent to the boundary can occur. 
The flow parameters at z = 0 axe considered known. The flow evolution as a function of the z coordinate is 
investigated. 

To transform to dimensionless quantities, we introduce length, velocity, and density scales. The unit 
of length is the characteristic scale of variation along the z axis; the unit of velocity is the rotational velocity 
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component in region II at z = 0 and r = r0; the fluid density is equal to unity. Below, all quantities are used 
in dimensionless form unless otherwise specified. 

The following notation is used: (u, v, w) are velocity components that correspond to (r, ~, z), p is the 
pressure, and 5 is the dimensionless value of r0 at z = 0. It is assumed that 5 (~ 1, i.e., the radius of the pipe 
varies slowly with variation of the z coordinate. 

Passing over to a long-wave approximation, we extend the coordinates and functions [1]: 

r 2 --+ 52rl ,  z --* z ,  2ur  --+ 52q ,  v r  --+ 5 A ,  w --+ w ,  p --~ p .  

Thus, the boundaries ro ( z )  and r l (z)  transform into r/0(z) and r/l(Z), and r/0(0) = 1, according to the definition 
of 5. 

As a result, the equations of motion and continuity take the form 

52( q2 ) A 2 
qwn + wwz  = - P z ,  -~ qqn - ~ + wqz - ~ = --2Tlp~, 

" (1.1) 
q A  n + w A z  = O, qn + wz = O. 

The subscripts from independent variables denote the corresponding partial derivatives. 
The boundary conditions are 

q = A = O  for 77=0. (1.2) 

At the boundary of the regions 7/ = r/l, the pressure is considered continuous and the following kinematic 
condition 

q = Wr]l z 

is satisfied. For r 1 = rl0, the nonpenetration condition is satisfied: 

(1.3) 

q = wrl0z. (1.4) 

Furthermore, the terms in (1.1) that are multiplied by 5 2 are considered small and are omitted, and the system 
is transformed to mixed Euler-Lagrange variables in the same manner as is done in [1, 2]. The transformation 
of the equations is performed separately for regions I and II. 

The new independent variables z' and v (0 ~< v ~< 1) are introduced by the relations z = z t and 
r I = R ( z  I, v) ,  where R satisfies the equation 

wry,  = q (1.5) 

and the boundary conditions 

R ( z ' ,  O) = O, R ( z ' ,  1) = rll , R(0, v) -- vT/10 in region I; 

R ( z ' ,  O) = 71o , R ( z ' ,  1) = 7/1, a(0 ,  v) = (1 - v) + vT/,0 in region II. 

Here r/10 --- r/l(0) and it is taken into account that )70(0) = 1. With this definition of R, boundary conditions 
(1.2) (for q) and (1.3), and (1.4) are satisfied automatically. The unknown boundary )71 becomes the known 
boundary v = 1. If we ignore the terms with 5 2, system (1.1) in the variables z' and v (below, the prime on 
z t is omit ted)  takes the form 

A 2 
w A z  = O, ~ -~R~,  = p~,, R v w w z  = -R~ ,pz  + Rzp, , ,  q~, + R v w 2  - Rzwz,  = O. 

From the first equation it follows that A -- A ( v ) .  Then, integration of the second equation with respect to 
v from v to 1 yields an expression for p, and the result is substituted into the third equation. By means of 
(1.5), q is eliminated from the fourth equation. As a result, we obtain the following system of two equations: 

1 / )  % 

Z '  
V 
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Here A1, pl, and R1 are values that  correspond to u = 1 (at the boundary between regions I and II). We 
note that the equations have the same form (1.6) in regions I and II. The values of A1 can be different since 
in passage through the boundary, a jump in the velocity component tangent to the boundary is admissible. 
The values of pa and Ra are the same in regions I and II because of the pressure continuity and the definition 
of R. 

We first construct a solution in a special form in region II: 

w = w2(z), a = 1, R = (1 - u)7]o(z) + VT?l(Z). (1.7) 

We note that solutions (1.7) are a good approximation of real flows outside the vortex core [5]. Substituting 
(1.7) into (1.6), we obtain Pl~: 

- - 2 p l z  = (1/711)z Jr" (Wi0(1  --  7110)2/(710 -- 7]1)2)z. 

Here w20 = w2(0), 7110 = 711(0), and 710(0) = 1. The resulting value of p l z  is substituted into system (1.6) for 
region I. As a result, for region I we obtain the equations 

z = 0, (wn )z = 0, (1.8)  
v 

where A1 is the value of A for v = 1 in region I (generally, it is not equal to 1); the quantity R1 is replaced by 
7/1. Thus, the study of the flow in the jet was reduced to the study of the behavior of the solutions of system 
(1.8). Equations (1.8) are solved with initial data for z = 0. 

A system of equations qualitatively similar to (1.8) is obtained and studied in [1, 2]. It is shown that 
the equations are considerably simplified and rigorous analytical estimates are obtained if the integral term 
in the first equation is equal to zero. In this case, as shown in [2], the main regularities of the behavior of the 
vortex core are the same in the presence or absence of this term. Thus, to understand the main regularities, 
we originally restrict ourselves to the case A v  = O. It is easy to see that the condition A~ = 0 leads to the 
condition A = 0, i.e., in this case, the fluid in the jet does not have a vorticity component along the axis. 

We set A = 0 (hence, A1 = 0). We integrate (1.8) from 0 to z. Next, the first equation is solved for 7]0. 
Integration of the second equation with respect to u with allowance for the fact that  711 = R ( z ,  1) yields an 
expression for 711. As a result, we have 

7]0 = / ( r  = w20(1 - 7110)(w 0 + - 1/711 + 1/7110) - 1 / 2  + 711, 
1 (1.9) 

711 -- / W 0 ( b ' ) 7 ] 1 0 ( W  2 -I- r  -1 /2  die. 

0 

Here the following notation is used: r -- w 2 - w2o, where w0 is the value of w for z -- 0. 
Thus, the problem amounts to the study of the dependence r which is given in an implicit manner 

by Eqs. (1.9). 
2. S t r u c t u r e  of  t h e  So lu t ions .  We first examine the dependence of ~b (and, hence, w and yl) on 7]o 

for small variations of 770 in the vicinity of 7]0 = 1 (7]o -- 1 at z = 0); ~b(1) = 0, according to the definition of 
~b. In the neighborhood of zero, the behavior of f ( r  is determined by the value of the first derivative at zero. 
Then, r ~ (7]0 - 1)/A for r << 1, where 

1 1 
1--7110{ 1 f dw ) /7] lodu 

X=f ' (O)=~\~- .~o l  ~ - 1  -o 2w~ " 
Hence it follows that the behavior of r with variation in 77o is qualitatively different, depending on the sign of 
)~. For example, for ~ > 0, as 7]o (i.e., the radius of the nozzle) increases, r and w increase, and 711 decreases; 
for A < 0, r and w decrease, and r/1 increases. 

We study the nonlinear stage of the dependence r For this, we examine the properties of the 
function f(q,). We assume that  w0(v) satisfies the inequalities 0 < ~/ ~< wo(ie) < ~ .  Let f ' (0) r 0. Then, 
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by virtue of the implicit function theorem and the definitions of ri1 and f(~b) and with allowance for the 
restrictions on w0(v), Eqs. (1.9) have solutions as long as f'(~b) # 0, ~ /> _3'2, and f(~b) is bounded. We 
introduce the notat ion g(~b) = w220 + ~b - 1/ri1 + 1/rit0. Then,  

Differentiating g(~b), we obtain 

f (~ )  -- w20(1 - r i 1 0 ) g  - 1 1 2  -1- 711. (2.1) 

1 

gP(~) = 1 - ri7 2/(wori ,o/2)(w 2 + r dr, 
0 

()o ~o worilo dv 1 WOqlO dr, ,~ 2 
9"(~) = ~ (wo~ + r 2ri~ (w0~ + r �9 

Using the Cauchy-Bunyakovskii  inequality, it is easy to show [1] that  g"(r > 0. Thus, g( r  is a downward 
convex function. In addition, we assume that  g1(-72 ) < 0 [for physically real flows, this inequality is always 
satisfied since g ' ( r  --* -cx~ as ~, --~ - 7  2 by virtue of the divergence of the integral]. Obviously, g '(r  --, 1 as 

--. r162 Then,  from the convexity of g(~b) it foUows that  there is a unique value r = ~b. such that  g ' ( r  = 0. 
There are four qualitatively different forms of the function g(r  

ql) g'(o) > o, ~ .  < o, g (~ . )  > o; 
2) d(o)  > o, r  < o, g (~ . )  < o; 
3) g'(O) < o, ~,. > o, g (~ . )  > o; 
4) d(o)  < o, r  > o, g (~ . )  < o. 

The first form is shown in Fig. 1. The remaining forms differ from it by a shift of the plot downward 
(so that the min imum falls below the abscissa), to the right ( r  > 0), and to the lower right. 

The  behavior of g( r  depends on the form of f ( r  From (2.1) it follows that  

f '(O) = -(w20(1 - rilo)g-3/2/2)g'(r + ql 1 (~). (2.2) 

Case I. Let g'(0) > 0. Then, g'(r  > 0 for ~b > 0. Since ri~(r < 0, we have f'(~b) < 0 for ~b > 0. 
Thus, f ( r  is a monotonically decreasing function for ~b > 0 and f (~ )  --* 0 as ~ --* or Hence it follows that  
Eqs. (1.9) have a unique solution r if ri0 decreases. Thus,  with decrease in ri0, ~ and w increase and ri1 
decreases. 

We study the behavior of f (~ )  for ~ < 0, assuming as before that g'(0) > 0. 
i. Let g(~ , )  > 0. Then, the following two cases are possible: 
(a) f'(~b) < 0 for all ~b < 0 down to ~b = - 3  ,2. Then,  f(~b) is a monotonically decreasing function over 

the entire interval ~b > _,),2. Hence it follows that  (1.9) has a unique solution for all ri0 < r/0., where ri0. is 
defined by the equation ri0. = f(-3 '2) ;  ~b and w are monotonically decreasing functions of ri0, and ri1 is an 
increasing function. For ri0 > ri0,, solutions do not exist. Solutions cease to exist because w(v) vanishes at 
points v at which wo(v) = 7- Qualitatively, the plot of f(~b) is shown in Fig. 2a (curve 1). 

(b) f'(~b) < 0 for all ~b > ~1, where f'(~bl) = 0 and _3'2 < ~bt < 0. Then,  by virtue of the implicit 
function theorem, a solution of (1.9) exists only for ri0 ~< ri0t, where ri0t = f(~bt). Here the dependence of g, 
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on 7/o also decreases monotonically over the entire interval 7/0 >/]01- The solution ceases to exist for/]0 --+/]01 
because the derivatives of ~b with respect to '7o tend to infinity (curve 2 in Fig. 2a). 

2. Let now g(~b,) < 0. Then there is ~bl, (~b, < ~bl, < 0) such that  g(~bl,) = 0, f(Ib) -~ oc as 
~b ~ r and f ' ( r  < 0 for r  ~bl,. Hence it follows tha t  a solution exists for all/]0. In this case too, r is a 
monotonically decreasing function/]0,  and r --+ ~bl, as 7/0 ~ oo (curve 3 in Fig. 2a). 

Thus,  if g'(0) > 0, three  cases of the behavior of r are possible: I . la,  I . lb ,  and 1.2. We examine the 
properties of f(~b) for g'(0) < 0. 

Case II. Let 9'(0) < 0. In this case, by virtue of (2.2) and the inequalities ,/~(r < 0, the following two 
cases are possible: f ' (0)  > 0 and f ' (0)  < 0. 

1. Let f ' (0 )  > 0 and g(lb,) > 0. Because 9'(~b) increases up to zero with increase in ~b, and/]~ < 0, 
there is ~b2 > 0 (~b I and r in Fig. 2b) such that  f'(~b2) -- 0. Then,  by virtue of the implicit function theorem, 
a solution exists for !b > 0 only when ~b < ~b2. For ~b < 0, the  following two cases are possible: 

(a) f ' ( r  > 0 for all - 7  2 ~< r ~< 0, then a solution exists up to r -- - 7  2 (curve 4 in Fig. 2b); 
(b) f'(~b) vanishes for - 7  2 < ~bl < 0, and then a solution exists up to r = r  (curve 5 in Fig. 2b) 
In both  cases, ~b increases with increase in 77o and a solution exists on a bounded segment/]01 < 70 </]o2, 

where/]02 = f(~b2) (r -- r ] and r = !b~ for curves 4 and 5, respectively) and /]01 is equal to f ( - 7  2) or 
f(~bl). The solution ceases to exist for/]0 --+ /]02 because the  derivatives tend to infinity and for/]0 --~ /]01 
because the axial velocity inside the core vanishes (case I I . l a )  or the derivatives tend to infinity (case II . lb)  
(Fig. 2b). 

2. Let f ' ( 0 )  < 0 and 9(r  > 0. Then,  two new cases for f ( r  are possible: 
(a) f'(~b) < 0 for - 7  2 < ~b < r where 0 < ,/;22 < oo and f'(~b~) = 0 (curve 6 in Fig. 2c); 
(b) f ' ( r  < 0 for r < ~b < "~b 1, where - 7 2  < r < 0, 0 < ~b~ < oc, and f ' ( r  = f ' ( r  = 0 (curve 7 

in Fig. 2c). 
3. Let g'(0) < 0 and g ( r  < 0. Since ~b, > 0 for g'(0) < 0, the types of behavior of f ( r  for r < 0 are 

the same as in cases II.1 and II.2. For ~b > 0, differences appear.  Since g(0) > 0, g ( r  < 0, and r  > 0, there 
is 02, such tha t  g(r  = 0, where 0 < r < r  Since 9( r  = 0, from (2.1) it follows that  f ( r  ~ c~ as 

r r 
Let f ' ( 0 )  > 0. Then, if f ' ( r  > 0 for 0 < r < r  two new cases are possible: 
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(a) a solution exists for all 7]o > f ( - 7  2) (curve 8 in Fig. 2d); 
(b) a solution exists for all ,7o > f(r  where r is such that f ' ( r  = 0 (curve 9 in Fig. 2d). 
In both cases, r increases with increase in r/0 and r ~ r as r/0 --* cx~. 
Let f ' (0 )  < 0. Hence it follows that near zero, f ( r  decreases as ~b increase. Since f ( r  --, c~ as 

r ~ r there exists r such that f ' ( r  = 0, where 0 < r < r Thus, cases II.2a and II.2b are realized, 
and new cases will not arise. 

Thus, the  following statements are proved: 

- -  For g'(0) > 0 and 9(r > 0, a solution r exists for r/0 from the interval 0 < ,70 < r~01, where 
7701 is equal to f ( - 7  2) or f ( r  In this case, r < 0; 

- -  For g'(O) > 0 and g(r  < 0, a solution exists for all 77o and ~'(r/o) < 0; 
- -  For g'(0) < 0, f ' (0)  > 0, and g(r  > 0, a solution exists for ~70 from the interval r/01 < ,70 < 7/02, 

where r/01 is equal to f(_~/2) or f ( r  and ,/02 = f ( r  in case II . la  and 7102 = f(r in case II.lb, r > 0; 
- -  For g'(0) < 0, f ' (0)  > 0, and g(r  < 0 a solution exists for ,7o from the interval ~/01 < 7]0 < oo and 

r > o; 
For g'(0) < 0 and f~(0) < 0, a solution exists for ,70 from the interval r/02 < r/0 < r/01 and r < 0. 

In divergent nozzles, a solution for all 77o ~ ~ exists only in three cases: 1.2, II.3a, and II.3b. In case 
1.2, r and w decrease, and the jet radius 771 increases to finite values as '7o -'* oo. In cases II.3, r and w 
increase, and the jet  radius decreases to finite values as ,70 ---* oo. In convergent nozzles, a solution exists for 
all r/0 ~ 0 in three cases: I.la, I .!b, and 1.2. For all ~70 from 0 to o0, a solution exists only if case 1.2 is realized. 

The case of a thin jet is a certain simplification of the problem. We assume that the jet radius is much 
smaller than the radius of the pipe (r/1 << r/0). Then, ignoring r/1 compared to r/0, we omit r/1 on the right side 
of the second equation of (1.9) and '/10 in the expression 1 - 1/10. As a result, we find that the signs of f ' ( r  

and g'(r  are opposite. It is easy to see that, thus, of the indicated nine cases, only the following four remain: 
I . lb,  1.2, II . la,  and II.3a. We note that in cases I . lb  and 1.2, the dependence of the jet  radius on the nozzle 
radius increases monotonically, and in cases I I . la  and II.3a, it decreases monotonically. Thus, in convergent 
nozzles, a solution exists up to r/0 --* 0 in cases I . lb  and 1.2, and in divergent nozzles, it exist up to 770 ~ 
in cases 1.2 and II.3a. 

3. C o m p a r i s o n  of  t he  T h e o r y  w i t h  E x p e r i m e n t s .  Within the framework of the proposed model, 
the flow evolution in the jet  along the axis is calculated as a function of the nozzle radius. For this, according 
to (1.9), it is necessary to know the following parameters at the nozzle entry: the jet radius, the velocity 
circulation around the axis in the outer flow, and the axial velocities in the outer flow and the jet. 

We compare the results obtained with experimental data on tornado-like vortices in pipes of variable 
radius in order to establish the influence of the mechanism considered on the vortex flow. Following [6], we 
assume that for a tornado-like vortex having the same entry parameters for the outer flow and axial velocity 
in the core as the jet,  vortex breakdown or jump arises in the place of nonextensibility of the solution for the 
jet. In other words, the behavior of the vortex core is estimated from analysis of the jet behavior. We compare 
the estimates with the experiments of [4], where both the locations of vortex breakdown and velocity profiles 
were measured. 

According to [4], the profiles of dimensional azimuthal and axial velocities in the vortex before 
breakdown have the form 

V = ( K / r ) ( 1  - exp ( - a r 2 ) ) ,  W ----- Wl q- W2 exp ( -~F2) ,  (3.1) 

where a,  K,  W1, and W2 are constants. 
As the radius of the core, we use the value for which the rotational velocity component reaches a 

maximum. According to (3.1), this occurs for a r  2 ~ t.25. For analytic estimates, the axial velocities of the 
outer flow and the flow in the core are approximated by their values averaged over the cross section. From (3.1) 
it follows that the average axial velocity in the core is W0 = W1 "+" W2(1 - -  exp ( - -ar2) ) / (ar21)  ,~ W1 + 0 . 5 7 W 2  = 

0.43W1 + 0.57Wmax, where Wmax = W1 + W2 is the maximum axial velocity attained on the axis for r = 0. The 
velocities are normalized by V0 = K/r00 (r00 is the radius of the pipe at the entry). The values of W1, Wmax, 
and K axe taken from the plots given in [4, Fig. 2]. The quantity K is calculated from the data taken at a 
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TABLE 1 

Flow Re 
parameters 3220 4540 6000 

Wmax 

Wo 

Vo 

rio/too 

W(o) 
(r./roo), 

(z./,-oo), 

1.068 

7.67 

12.27 

10.29 

3 

0.31 

0.56 

1.23 

1.25 

9.2 

1.541 

7.23 

15.9 

12.17 

4.23 

0.31 

0.37 

1.13 

1.04-1.09 - - -  

5.2 

1.7-3.2 

0.727 

11 

16 

13.85 

3.12 

0.29 

0.7 

1.47 

18.8 

1.068 1.282 

11 10.9 

20.25 22.5 

16.27 17.51 

4.29 5.25 

0.29 0.29 

0.59 0.47 

1.42 1.24 

1.19-1.24 1.10-1.14 - - -  - 

16.8 9.6 

7.6-9.2 3.9-5.7 

0.727 
14.68 

21.9 

18.8 

4 

0.28 

0.71 

1.55 

22 

1.068 1.282 

14.25 13.6 

27.84 32 

22 24.09 

5.92 7.12 

0.28 0.28 

O.54 0.45 

1.34 1.3 

1.15-1.18 1.04 

13.6 12 

5.8-7.0 1.7 

distance of 0.8r00 since at the pipe walls, the rotational velocity component decreases abruptly and departure 
from law (3.1) takes place. Up to a distance of 0.8r00, the profiles of V are well approximated by relation 
(3.1). Then, W20 "~- W1/Vo, and wo = Wo/Vo. 

Integrating (1.9) and the expression for g'(0) assuming that w0 is constant, we obtain 

V(0)  = 1 - 1/(2t10w ), (3.2) 

10 = w20(1 - 110)[  0 + - + r + 1/110] - v 2  +  0t10(w0 + r  

where '/10 = (rio~too) 2 (rl0 is the radius of the core at the entry). Since in all plots [4, Fig. 2] t10 < 0.1 << 1, the 
calculations are performed in the approximation of a thin jet. This accuracy is sufficient to obtain estimates 
of the order of magnitude. In addition, as follows from (1.9) and [4, Fig. 2], for real axial velocity profiles, 
the integrand in the formula for 11 is an integrable function as r --+ -w2(v) for any v. Hence it follows that 
t l  has the same order of magnitude as 110 does. If the average value is taken as the w0, then ~]1 tends to oo 
as r ---+ - w  2, and this is inconsistent with the real situation. Ignoring the second term and 110 in the second 
equation of (3.2) compared to 1, after transformations we obtain 

10 = f ( r  ~ w20{[( w2 + r  _ w0(1 - g'(0))] 2 -{- w20 - (w0g'(0))2} -1/2. (3.3) 

From (3.3) it follows that the type of f ( r  is determined by the sign of g'(0) and the sign of the difference 
w220 - (w0g'(0)) 2. As shown below, they are both positive, i.e., f ( r  belongs to case I.lb. Thus, in a divergent 
pipe, the solution is extensible to a finite interval until f ( r  reaches a maximum. From (3.3) it follows that 
the maximum is reached when the expression in square brackets vanishes. Thus, we obtain the maximum 
pipe radius up to which a continuous solution exists. We assume that in the place of nonextensibility of the 
solution there is vortex breakdown or jump. Then, the pipe radius r ,  and the distance along the z, axis at 
which these phenomena take place are approximately equal to 

. 1 / 2 ,  . 2  - -  - -  ( 3 . 4 )  r,/r00 ~ w20 1,w20 (wog'(O))2} -1/4, z,/r00 ~ [(r,/r00) 1] corot, 

where a = 1.43 ~ (a is the half-angle of the pipe opening) and cot ~ ~ 40. Table 1 gives the values of W1, 
Wm~x, W0, 1/0 [cm/sec], rio~too, Re, and 12 calculated on the basis of Fig. 2 in [4], the values of g'(0), (r,/roo)~, 
and (z,/roo)~ calculated from formulas (3.2) and (3.4), and the experimental values of (r,/roo)e and (z,/roo)e 
obtained from the plots (see [4, Fig. 17]). 

From Table 1 it follows that there qualitative agreement with the experiments. As indicated in [4], 
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for fixed Reynolds numbers, an increase in fl shifts the vortex breakdown upstream, i.e., the breakdown 
arises at smaller radii of the pipe since the pipe diverges downstream. Although the model can be related 
to axisymmetric breakdown, calculations by formula (3.4) given in Table 1 show that an increase in 12 for a 
specified Re number leads to a decrease in (r./roo)t for the cases given [4, Fig. 2]. The calculated quantitative 
values were mostly larger than the experimental results, but they give estimates of the orders of magnitude. 
The more considerable differences for z. compared to r.  are explained by the small opening angle of the pipe 
in the experiments and, as a consequence, by the high sensitivity of the axial position of the breakdown z. to 
small variations in r,.  

Faler and Leibovich [4] pointed out that the dependence of the position of the vortex breakdown at a 
specified 12 on the Re number is not always monotonic. With increase in Re, it is more often shifted upstream, 
but, sometimes, downstream. According to the data of Table 1, the dependence of (r./roo)t on the Re number 
also does not exhibit strictly monotonic behavior. 

We note that the calculation of g'(0) and g(~b,) from the experimental data for flows before vortex 
breakdown given in [5, Table 1] gives g'(O) > 0 and g(r  > 0. Hence it follows that flows before the breakdown 
refer to case I. la or I. lb. In both cases, a continuous solution for divergent pipes exists, according to the model, 
only for bounded radii of the pipe, and this agrees qualitatively with the experiments. 

Thus, one can conclude that the mechanism of interaction of the axial jet with the outer rotating flow 
considered in the model is manifested, at least, for given experimental data, in the fluid flow in the core of 
a tornado-like vortex in a pipe of variable radius. Account of this mechanism based on the study of the jet 
behavior allows one to predict the possibility of vortex breakdown and to evaluate its location. 

The interaction of the axial jet with the outer rotating flow has a complicated character since even in 
the fairly exact formulation of the problem considered, a great number of possible types of flow dependent on 
the entry conditions are obtained. 
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